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Abstract

A Bayesian inference approach is presented for the solution of the inverse heat conduction problem. The posterior

probability density function (PPDF) of the boundary heat flux is computed given temperature measurements within a

conducting solid. Uncertainty in temperature measurements is modeled as stationary zero-mean white noise. The in-

verse solution is obtained by computing the expectation of the PPDF. The posterior state space is exploited using

Markov chain Monte Carlo (MCMC) algorithms in order to obtain estimates of the statistics of the unknown heat flux.

The MCMC sampling strategy enables the extension of the Bayesian inference approach to inverse problems having

high-dimensional, non-standard distribution, and/or complex PPDFs. The ill-posedness (un-identifiability) of the in-

verse problem is cured through prior distribution modeling (Bayesian prior regularization) of the unknown heat flux. A

special model of Markov random field (MRF) is adopted for prior distribution modeling of the unknown heat flux. An

augmented Bayesian model is proposed for estimating the statistics of the measurement noise as well as the unknown

heat flux. Two inverse heat conduction examples are presented to demonstrate the potential of the MCMC-based

Bayesian approach. The simulation results indicate that MRF provides an effective prior regularization, the estimates

using MCMC samples are accurate and the Bayesian approach captures very well the probability distribution of the

unknown heat flux.

� 2004 Elsevier Ltd. All rights reserved.
1. Introduction

In the inverse heat conduction problem (IHCP), one

is interested in identifying the heat flux on part of the

boundary given sufficient conditions on the remaining of

the boundary and temperature measurements within the

domain of a conducting solid. Inverse heat conduction is

of interest in a wide range of scientific and engineering

areas including manufacturing process control, metal-

lurgy, chemical, aerospace and nuclear engineering, food

science, medical diagnostics, etc. The main characteristic

of the IHCP versus a well-posed direct heat conduction
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problem is that it leads to solutions that generally are

not unique or stable to small changes in the given data

(Alifanov [1]).

A number of solution methods has been developed

for the IHCP. No attempt is given here to review these

techniques and the interested reader can consult Alifa-

nov [1] and Beck et al. [2]. The majority of the ap-

proaches restate the problem as a least-squares

minimization problem over the whole-time domain or in

sequential time intervals. The cost functional is usually

stated as an appropriate norm of the deviation between

computed temperature at the sensor locations for a

guessed heat flux and the given temperature measure-

ments. Gradient optimization techniques are introduced

for performing the optimization process using either a

finite or an infinite dimensional representation of the

unknown heat flux. In addition to the direct model,
ed.
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Nomenclature

c normalizing constant of PDF

Cp thermal capacity

d distance of thermocouple to boundary

E expectation

f arbitrary function

F direct system solver

H sensitivity matrix

I identity matrix

J objective function

k thermal conductivity

l likelihood function

L length scale of domain, length of Markov

chain in Section 4

L2 square-integrable function space

m dimension of h
M number of thermocouples

n total number of measurements

n unit normal vector

N number of measurement steps

p probability density function (PDF)

q heat flux

qh known boundary heat flux

q0 unknown boundary heat flux

�q deterministic inverse solution

r relative error of estimation

t time

tmax time scale

t̂ time of measurement

Dt thermocouple sampling interval

dt time interval in discretization of the inverse

solution

T temperature

Tg known boundary temperature

TH homogeneous part of direct solution

TI inhomogeneous part of direct solution

T0 known initial temperature

u random number

U uniform distribution

w basis function of inverse solution

W covariance matrix of MRF

x̂ location of thermocouple

Y temperature measurement vector

Greek symbols

a regularization parameter

b parameter of exponential distribution

c scaling constant of general MRF

dð�Þ Kronecker delta function

h parameter form of unknown heat flux

ĥ estimate of h
k scaling constant of Gauss MRF

q material density

r standard deviation

xm measurement noise

C boundary

Cg Dirichlet boundary

Ch Neuman boundary

C0 boundary with unknown heat flux

U kernel function of MRF

X physical domain

Superscripts

T transpose

(i) ith iteration or ith time step

* candidate

+ non-dimensional quantity

Subscripts

aug augmented model

i ith component

�i full conditional set

i � j site neighborhood

max maximum

min minimum

med median

LS least squares

MLE maximum likelihood estimator

MAP maximum a posteriori
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appropriate continuum or discrete sensitivity and/or

adjoint problems are usually required in such ap-

proaches. The ill-posedness of the resulting formulations

is addressed using combination of appropriate regular-

ization techniques including regularization by Tikhonov

[3], the future information method (function specifica-

tion method) by Beck et al. [2], Zabaras and Liu [4] or

the iterative regularization techniques by Alifanov [1]

and Sampath and Zabaras [5].

The above deterministic inverse techniques based on

exact matching or least-squares optimization, lead to
point estimates of unknowns without rigorously con-

sidering the statistical nature of system uncertainties and

without providing quantification of the uncertainty in

the inverse solution. The existing methods for uncer-

tainty quantification that can be applied in heat transfer

analysis can be divided into deterministic and probabi-

listic methods as in Narayanan and Zabaras [6]. The

deterministic methods, including interval analysis and

propagation using sensitivity derivatives, are easy to

implement but not sufficiently accurate as they are not

able to provide higher order statistics of the estimates
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Fig. 1. Schematic of the inverse heat conduction problem

(IHCP). The objective is to compute the boundary heat flux q0
on C0 given appropriate boundary conditions on the remaining

of the boundary and temperature measurements at a number of

points within the domain.
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[6]. The reliability method, which is a probabilistic

technique, is able to provide characterization of uncer-

tainties up to the second statistical moment, however, it

is not sufficient for complex problems. Two other more

promising probabilistic methods are the spectral sto-

chastic finite element method (SSFEM) [6] and Monte

Carlo simulation based methods as discussed by Liu [7].

In this paper, Bayesian inference is explored for the

solution of the IHCP and for uncertainty quantification

using an implementation based on advanced Monte

Carlo techniques.

A frequentist approach to the IHCP based on the

maximum likelihood estimator (MLE) is often used in

parameter estimation problems. In MLE, the probabil-

ity of observations (temperature measurements) given

the inverse solution is maximized. This probability is

called likelihood and is also incorporated here in the

Bayesian formulation to update the prior distribution.

Recently, Fadale et al. [8] and Emery et al. [9] presented

an extended MLE approach to investigate the system

uncertainties for parameter identification in heat trans-

fer problems. MLE takes into account the statistics of

uncertainties but excludes the prior knowledge of un-

knowns, hence, it often leads to an ill-posed problem

and fails to provide smooth solutions when it is extended

to function estimation.

The Bayesian inference approach can provide a

solution to the IHCP by formulating a complete prob-

abilistic description of the unknowns and uncertainties

given temperature data. The Bayesian approach incor-

porates the known information regarding the unknown

heat flux and system uncertainties into a prior distribu-

tion model that is then combined with the likelihood to

formulate the posterior probability density function

(PPDF) [10,11].

It regularizes the ill-posed IHCP through prior dis-

tribution modeling (Emery [12], Vogel [13]), and in

addition provides means to estimate the statistics of

uncertainties. In this work, emphasis is given on the

prior distribution modeling techniques based on a spe-

cial model of Markov random field (MRF) described by

Besag et al. in [11] and Besag and Kooperberg [14].

Although the Bayesian inference technique has been

developed over a long period, only with the recent

propagation of efficient sampling methods, such as

Markov chain Monte Carlo (MCMC), its application to

engineering inverse problems becomes feasible.

The plan of the remaining of this paper is as follows.

Section 2 provides a definition of the IHCP. Section 3

introduces the minimum required background on the

generic Bayesian inference approach, discussing the

roles of likelihood and prior distributionmodel. Section 3

also provides a formulation of the Bayesian model for

the IHCP with a review of the relations between

Bayesian prior distribution modeling and Tikhonov

regularization theory. Section 4 discusses in details the
numerical implementation of Bayesian estimation by

MCMC. Finally, Section 5 demonstrates the potential of

the developed Bayesian approach through the solution

of one- and two-dimensional inverse heat conduction

problems.
2. The inverse heat conduction problem

The inverse heat conduction problem of interest is

defined with the following equations (see Fig. 1):

qCp
oT
ot

¼ r � ðkrT Þ; in X; t 2 ½0; tmax
 ð1Þ

T ðx; tÞ ¼ Tg; on Cg; t 2 ½0; tmax
 ð2Þ

k
oT ðx; tÞ

on
¼ qh; on Ch; t 2 ½0; tmax
 ð3Þ

T ðx; 0Þ ¼ T0ðxÞ; in X ð4Þ

where q, Cp, k denote the density, heat capacity and

thermal conductivity, respectively. The known boundary

conditions include the heat flux qh and the temperature

Tg on the subsets Ch and Cg, respectively, of C. Finally,
T0 is the known initial temperature field.

The main objective of the IHCP is the calculation of

the heat flux q0 on C0 � ½0; tmax
 (Cg [ Ch [ C0 ¼ C):

k
oT ðx; tÞ

on
¼ q0; ðunknownÞ onC0; t 2 ½0; tmax
 ð5Þ

In addition to the conditions of Eqs. (1)–(4), approxi-

mations of the temperature field are available at M
points (temperature sensor locations) within the domain:

Y ðjÞ
i ’ T ðx̂i; t̂jÞ; i ¼ 1; . . . ;M ; j ¼ 1; . . . ;N ð6Þ

Eqs. (1)–(5) define a well-posed direct heat conduc-

tion problem for each guessed heat flux q0 on

C0 � ½0; tmax
. Let us denote the solution to this direct
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problem as T ðx; t; q0Þ. In the IHCP, one is interested to

compute q0 so that in some sense T ðx̂i; t̂j; q0) matches the

given temperature measurements Y (vector form of Y ðjÞ
i

in Eq. (6)). Let us denote with F ðq0Þ the vector of

computed temperatures at the sensor locations x̂i,

i ¼ 1; . . . ;M , at times t̂j, j ¼ 1; . . . ;N (̂tN ¼ tmax). The

operator F in general needs to be computed numerically

through techniques such as finite element analysis.

In the present implementation of the IHCP, the un-

known heat flux q0ðx; tÞ is discretized linearly in space

and time. The space/time discretization used in the direct

problem (state space) is generally finer than that used in

the discretization of q0 (parameter space). Thus, the

unknown q0 is approximated as follows:

q0ðx; tÞ ¼
Xm

i¼1

hiwiðx; tÞ ð7Þ

where wi’s are pre-defined basis functions. The IHCP is

then transformed to the estimation of the weights hi’s.

These weights are considered to be represented by an

unknown random vector h of length m.
Let us denote with xm the sensor uncertainty (sensor

noise). Then one looks for the vector h such that:

Y ’ F ðhÞ þ xm ð8Þ

The statistics of noise may be known a priori or un-

known as in most real-world engineering systems. In

both cases, either in order to improve knowledge of

noise distribution or to capture this (unknown) infor-

mation, the parameters controlling noise distribution

can be incorporated into the problem unknowns. For

example, in many engineering applications, the mea-

surement noise is modeled as stationary zero-mean white

noise with Gaussian distribution, hence, the probability

density function of xm is determined by a single un-

known parameter r, which is the standard deviation

(std). An augmented unknown vector haug ¼ ½ h r 
T
can be formed to be estimated from the observation

vector Y . In principle, other system uncertainties can be

treated as unknowns and be computed from the given

data as well.

Direct inversion of Eq. (8) to compute h is not fea-

sible as it leads to an ill-posed system of equations. In

most deterministic approaches to the IHCP, it is as-

sumed that a quasi-solution to the inverse problem exists

in the sense of Tikhonov [3]. In particular, one looks for

a flux �q0ðx; tÞ 2 L2ðC0 � ½0; tmax
Þ such that:

Jð�q0Þ6Jðq0Þ; 8q0 2 L2ðC0 � ½0; tmax
Þ ð9Þ

where, L2ðC0 � ½0; tmax
Þ is the space of all square inte-

grable functions defined over the spatial and temporal

domains C0 and ½0; tmax
, respectively. The objective

function Jðq0Þ � JðhÞ to be minimized is usually cho-

sen as the L2 norm of the error between the estimated

and measured temperatures along the sensor locations:
Jðq0Þ ¼
1

2

XM
i¼1

XN

j¼1

fT ðx̂i; t̂j; q0Þ � Y ðx̂i; t̂jÞg2

¼ 1

2
kF ðhÞ � Y k2L2 ð10Þ

The discrete L2 norm is introduced above to simplify in

the following analysis the notation of the cost func-

tional.
3. A Bayesian inference approach to the IHCP

3.1. Bayesian inference fundamentals

Bayesian statistics study the probability of a

hypothesis from both current achieved information and

previous knowledge. The basis of Bayesian inference is

the Bayes’ formula:

pðhjY Þ ¼ pðY jhÞpðhÞ
pðY Þ ¼ 1

c
pðY jhÞpðhÞ ð11Þ

h is used here to represent a hypothesis and Y stands for

observation related to this hypothesis. pðhjY Þ, pðY jhÞ
and pðhÞ are called posterior probability density func-

tion (PPDF), likelihood function and prior probability

density function (PDF), respectively. Based on Eq. (11),

the posterior probability of a hypothesis given some

observations (evidence) is proportional to the product of

its likelihood and prior (unconditional) probability.

Bayesian inference provides powerful techniques for

estimation, hypothesis testing, model selection and

decision problems [10].

A modern outlook on Bayesian estimation that is

adopted here is that of a supervised regression method

of statistical learning. In this sense, the vector parameter

h representing the unknown heat flux in the IHCP can be

treated as a random process and Bayesian estimation

can be used to compute its joint PPDF.

From Eq. (11), it is seen that all the information

available about h is contained in the posterior PDF

pðhjY Þ. Once pðhjY Þ is formulated, one can compute the

estimates of h (inverse solution) and corresponding

probability bounds. The most common estimates

based on this posterior PDF are the ‘posterior mean

estimate’

ĥpostmean ¼ EhjY ð12Þ

and the ‘maximum a posteriori’ (MAP) estimate:

ĥMAP ¼ augmaxh pðhjY Þ ð13Þ

Note that it is not necessary to compute the normalizing

constant c in Eq. (11) when exploiting the posterior state

space. This greatly simplifies the analysis as it is not easy

to find the marginal distribution of Y .
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3.2. Prior distribution modeling and Markov random field

In this work, the only uncertainty considered is the

measurement error, which is modeled as a Gauss ran-

dom variable. Thus, the prior is selected from the

exponential conjugate family. Also since the main un-

known in the IHCP is the heat flux q0 that is generally a

function of space and time, Markov random field

(MRF) is considered here as a suitable choice for prior

distribution modeling. The model described in [14,15] is

used that originated in spatial statistics [16,17].

MRF has been successfully used for prior distribu-

tion modeling in numerous applications [11,14,15,18]. In

this work, MRF is introduced for simultaneous regu-

larization in space and time by treating time simply as

another spatial dimension. Therefore, in discussion of

the MRF, the unknown h is treated as spatially dis-

tributed quantity.

MRF is a point-pair spatial model of h. It takes the
general form:

pðhÞ / exp

(
�
X
i�j

WijUðcðhi � hjÞÞ
)

ð14Þ

in which hi is the unknown variable at spatial site i, c is

a scaling parameter and U is an even function that

determines the specific form of the MRF. The summa-

tion in Eq. (14) is over all pairs of sites i � j that are

neighbors and Wij’s are specified nonzero weights [11]. In

general, the neighbors to a particular nodal heat flux at a

given time refer to nodal heat fluxes at adjacent nodal

points and time steps. A wide range of different MRFs

can be found in [11,19].

The U used in the current study is in the form

UðuÞ ¼ 1
2
u2, which is a widely used model in spatial

problems. The MRF then can be rewritten as:

pðhÞ / km=2 exp

�
� 1

2
khTW h

�
ð15Þ

In the one-parameter model of Eq. (15), the entries of

the m � m matrix W are determined as, Wij ¼ ni if i ¼ j,
Wij ¼ �1 if i and j are adjacent, and as 0 otherwise. ni

is the number of neighbors adjacent to site i. W deter-

mines the dependence between components of h and k
controls the scale on which the random vector is dis-

tributed. This simple form of MRF has been reported to

be effective in a number of applications [11,14,20].

The prior introduced by the above MRF model is

invariant under space shift, therefore, its highest density

region (HDR) is able to capture the entire state space

and it will not over-constrain the likelihood. In addition,

it is able to model various dependence relations between

variables by changing the form of W . The single

impropriety in this prior is removed from the corre-

sponding posterior distribution by the presence of any

informative data [11].
The scaling parameter k is also of great importance.

As it will be discussed later in this paper, k controls the

strength of spatial dependence and regularization to the

inverse problem.

3.3. Regularization in Bayesian inverse approach

Tikhonov regularization modifies the original least-

squares problem (Eq. (10)) as follows:

ĥLS ¼ augminh

1

2
kF ðhÞ

�
� Y k2L2 þ akhk2p

�
ð16Þ

where ĥLS is the deterministic estimate of h, a is a reg-

ularization parameter and k � kp represents different

norms in the h-parameter space.

To clarify the relation between the above Tikhonov

regularization and the Bayesian prior regularization in-

duced by Eq. (15), it is assumed that xm is Gauss white

noise with known standard deviation r. Then the like-

lihood function is the following:

lðhjY Þ ¼ 1

ð2pr2Þn=2
exp

(
� ðF ðhÞ � Y ÞTðF ðhÞ � Y Þ

2r2

)

ð17Þ

where n ¼ M � N is the length of Y . The posterior PDF

of h can then be written as follows:

pðhjY Þ / exp

(
� ðF ðhÞ � Y ÞTðF ðhÞ � Y Þ

2r2

)
� km=2

� exp
�
� 1

2
khTW h

�
ð18Þ

The MAP estimate of h can then be derived as:

ĥMAP ¼ augminh

1

2
ðF ðhÞ

�
� Y ÞTðF ðhÞ � Y Þ þ kr2

2
hTW h

�
ð19Þ

By comparing Eqs. (16) and (19), it is seen that the least-

squares estimator with Tikhonov regularization and the

MAP estimator have similar mathematical forms. For

example, by choosing k ¼ 2a
r2 and W as an identity ma-

trix, Eq. (19) becomes identical to the zeroth-order

Tikhonov regularization approach.

It is now clear that in Bayesian formulation, k plays

the role of a regularization constant when r is known.

Different W ’s and U’s can be proposed for different

problems. One can in principle derive a MRF model to

emulate various norms in the parameter space used in

Tikhonov regularization. In either approach, selection

of the regularization parameter, a or equivalently of
1
2
kr2, is important. There are in general three approaches

for determining an optimal value of regularization

parameter. One is the so called ‘unbiased predictive risk

estimator’ (UPRE) method [13]. Another approach is
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the use of a hierarchical Bayesian model [15] when r is

known. In this case, the problem is modeled in a more

flexible way and one is able to investigate uncertainty in

spatial dependence as well as to find the optimal regu-

larization parameter. The third way, as used in this

work, is the heuristic Tikhonov method. Here, the in-

verse problem is solved with a set of regularization

parameters. Within a certain range of the regularization

parameter, the obtained inverse solution remains prac-

tically unchanged. The regularization parameter is then

chosen from this range.

In summary, there are two formulations that will be

used for the solution of the IHCP.

Formulation I––known r and user pre-determined a:

pðhjY Þ / exp

�
� 1

2r2
½F ðhÞ � Y 
T½F ðhÞ � Y 


�

� exp
�
� a

r2
hTW h

	
ð20Þ

Formulation II––unknown r:

pðh; r2jY Þ / ðr2Þ�
n
2 exp

�
� 1

2r2
½F ðhÞ � Y 
T½F ðhÞ � Y 


�

� ðr2Þ�m=2
exp

�
� a

r2
hTW h

	
pðr2Þ ð21Þ

where pðr2Þ is the prior distribution of r2.

To explore the posterior state space numerically,

MCMC is employed next.
4. Markov chain Monte Carlo

Numerical sampling methods are needed because the

PPDF may have a non-standard form, the problem may

be nonlinear or has an implicit likelihood. In addition,

the posterior state space in general has high dimension

and one needs to obtain the marginal distributions of

individual components. The most widely adopted

numerical method for exploring the posterior state space

is Monte Carlo simulation (MCS), which approximates

the true expectation of a function of h by the sample

mean. MCS is based upon large sample set from the

target PDF (here the posterior PDF pðhjY Þ). Various
sampling strategies have been proposed [21]. Among

these techniques, Markov chain Monte Carlo (MCMC)

is the most powerful one [21,22]. In the remaining of this

section, h denotes the unknown random vector, pðhÞ
denotes any probability density function of h (not only

the prior) and f denotes any function of h.

4.1. Monte Carlo principle

The idea of Monte Carlo simulation is to draw an

identical independently distributed (iid) set of samples
fhðiÞgL
i¼1 from a target PDF pðhÞ defined on a high

dimensional space Rm [21]. These L samples can be used

to approximate the target density with the following

empirical point-mass function:

pLðhÞ ¼
1

L

XL

i¼1

dhðiÞ ðhÞ ð22Þ

where dhðiÞ ðhÞ denotes the delta-Dirac mass located at

hðiÞ. Consequently, one can approximate the expectation

of any function f of h by its mean as follows:

ELðf Þ ¼
1

L

XL

i¼1

f ðhðiÞÞ7!L!1Eðf Þ ¼
Z

f ðhÞpðhÞdh ð23Þ

By the strong law of large numbers, ELðf Þ converges to
Eðf Þ. When f ðhÞ ¼ h, one is able to use Eq. (23) to

compute the posterior mean estimate of h. The L sam-

ples can also be used to obtain the MAP estimate of h as

follows:

ĥMAP ¼ argmaxhðiÞ pðh
ðiÞÞ ð24Þ

However, it is possible to construct simulated anneal-

ing algorithms [23] that allow us to sample approxi-

mately from the global maximum of the target

PDF.

4.2. MCMC––the Gibbs sampler

MCMC is a strategy for generating samples hðiÞ while

exploring the state space of h using a Markov chain

mechanism [21,24]. This mechanism is constructed so

that the samples hðiÞ mimic samples drawn from the

target distribution pðhÞ. Note that one uses MCMC

when he cannot draw directly samples from pðhÞ, but
can evaluate pðhÞ up to a normalizing constant.

The Gibbs sampler is a widely used MCMC algo-

rithm. For a m-dimensional random vector h, the full

conditional PDF is defined as pðhijh�iÞ, where h�i stands

for fh1; . . . ; hi�1; hiþ1; . . . ; hmg. When the full conditional

PDF is known, it is often advantageous to use it as the

proposal PDF, which is used to generate a new sample.

The important feature of this sampler is that the

acceptance probability is always 1. This means that the

candidate sample hð�Þ generated in this way will always

be accepted. It is interesting to note that, in the IHCP, it

is very costly to calculate the likelihood since for each

candidate sample one has to perform a direct numerical

simulation. Therefore, if a Gibbs sampler can be de-

signed for this kind of problem, it will avoid the com-

putation of the likelihood. For all linear IHCP examined

in this paper, Gibbs sampler is used to speedup the chain

convergence. With Nmcmc denoting the number of the

MCMC steps, the algorithm can be summarized as fol-

lows:
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1. Initialize hð0Þ

2. For i ¼ 1 : ðNmcmc� 1Þ
– sample hðiþ1Þ

1 � pðh1jhðiÞ
2 ; hðiÞ

3 ; . . . ; hðiÞ
m Þ

– sample hðiþ1Þ
2 � pðh2jhðiþ1Þ

1 ; hðiÞ
3 ; . . . ; hðiÞ

m Þ
– ..
.

– sample hðiþ1Þ
m � pðhmjhðiþ1Þ

1 ; hðiþ1Þ
2 ; . . . ; hðiþ1Þ

m�1 Þ

For the two Bayesian formulations in Eqs. (20) and

(21), different Gibbs samplers have been designed for the

linear IHCP. Using Eq. (7), the relation between the

unknown vector h and observation Y can be written as

follows:

Y ¼ Hh þ TI þ xm ð25Þ

where H is the sensitivity matrix determined as follows

(i ¼ 1 : M , j ¼ 1 : N , k ¼ 1 : m):

Hðði� 1ÞN þ j; kÞ ¼ THðx̂i; t̂j;wkÞ ð26Þ

In above equation, TH denotes the direct solution with

zero initial temperature condition, and zero temperature

and flux boundary conditions on Cg and Ch, respec-

tively, and wk as the applied heat flux on C0. TI denotes

the direct solution with zero heat flux condition on C0

and the prescribed known initial conditions in X and

boundary conditions on Cg [ Ch. Hence, F ðhÞ in Eqs.

(20) and (21) is replaced by Hh þ TI. When r is known, it

can be shown that the posterior distribution follows a

multivariate Gaussian, hence, the full conditional dis-

tribution of each random variable is in standard form,

which can be derived as follows:

pðhijh�iÞ � Nðli; r
2
i Þ; li ¼

bi

2ai
; ri ¼

ffiffiffiffi
1

ai

s
ð27Þ

ai ¼
Xn

s¼1

H 2
si

r2
þ kWii; bi ¼ 2

Xn

s¼1

lsHsi

r2
� klp ð28Þ

ls ¼ Ys � TI �
X
t 6¼i

Hstht;

lp ¼
X
j 6¼i

Wjihj þ
X
k 6¼i

Wikhk

ð29Þ

The standard form of the full conditional PDF enables

us to use the Gibbs sampler in this problem. In this

formulation note that the MAP estimate is the same as

the posterior mean estimate. In all examples reported

later in this paper, the posterior mean is used to refer to

the inverse solution. If one is only interested in the point

estimate, gradient methods can be used to solve the

optimization problem of Eq. (19) for a linear IHCP.

This approach is referred to as ‘direct optimization’ in

the remaining of the paper. However, implementation of

a Gibbs sampler is indispensable for exploiting the

posterior state space of h to achieve marginal PDFs, to

quantify uncertainty (probability bounds) in posterior

mean estimate, or to compute the expectation of an

arbitrary function of h.
When r is not known, a modified Gibbs sampler is

designed for the PPDF (Eq. (21)). In the current work, a

negative exponential distribution is assigned for the

prior PDF of r2. This is to constrain the non-negativity

of r2 while exploring the fact that the probability for r2

to take small values is high. Then Eq. (21) can be written

as:

pðh; r2jY Þ / ðr2Þ�n=2
exp

�
� 1

2r2
½Hh þ TI � Y 
T½Hh þ TI � Y 


�

ðr2Þ�m=2
exp

n
� a

r2
hTW h

o
exp

�
� r2

b

�
ð30Þ

where b defines the exponential distribution.

With any specified r, the full conditional PDFs of hi’s

remain the same as in Eqs. (27)–(29). Therefore, the

Gibbs sampler is used to update h. After each update of

all hi’s, the full conditional PDF of r2 is maximized to

obtain the update sample of r2:

pðr2jh; Y Þ / ðr2Þ�
nþm
2 exp

�
� C
2r2

� r2

b

�
ð31Þ

where C ¼ ½Hh þ TI � Y 
T½Hh þ TI � Y 
 þ 2ahTW h.
Statisticians have developed a large number of tech-

niques for convergence assessment [25]. The convergence

of MCMC is determined here by monitoring the histo-

gram and marginal density of accepted samples.
5. Examples

In this section, two IHCP examples are considered

using the introduced Bayesian inference techniques. The

first example is a detailed study of a classical one-

dimensional IHCP. The second two-dimensional exam-

ple provides estimation of the statistics of a space and

time varying heat flux given several temperature mea-

surements in the domain. Dimensionless quantities are

used in both examples.

5.1. Example I: boundary heat flux identification in 1D

heat conduction

A 1D transient linear heat conduction problem is

considered (Fig. 3). The governing equations are as

follows:

oT
ot

¼ o2T
ox2

; 0 < t < 1; 0 < x < 1 ð32Þ

T ðx; 0Þ ¼ 0; 06 x6 1 ð33Þ

oT
ox

����
x¼1

¼ 0; 0 < t < 1 ð34Þ

oT
ox

����
x¼0

¼ qðtÞ ðto be computedÞ; 0 < t < 1 ð35Þ



x
q

d

L

Y(d,i∆t)

Fig. 3. One-dimensional inverse heat conduction example. One

is interested to compute the temporal history of the boundary

heat flux q given temperature measurements at the sensor

placed at x ¼ d.

θi-1

dt

neighbors of θi

t

q
wi

θi θi+1

Fig. 2. Basis functions for the discretization of the 1D heat flux.
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The direct problem considered represents the solu-

tion of the system of equations above with the heat flux

qðtÞ defined in Fig. 4. A FEM solver was implemented

for the solution of this problem with 100 linear elements

in space and 1000 time steps. It is considered here that

this discretization can accurately reflect the direct heat

conduction process. Simulated measurement data at

x ¼ d (considered as the thermocouple location) are

generated by using the obtained direct solution T ðd; tÞ.
The measurement vector Y is obtained by adding ran-

dom noise to the vector ½ T ðd;DtÞ T ðd; 2DtÞ . . .
T ðd; 1Þ
T, where Dt is the time interval between two

consecutive measurements. Therefore, the size of Y is

n ¼ N ¼ 1
Dt. The inverse problem of interest is thus the
q

t0 0.4 0.8

1

1.0

Fig. 4. True boundary heat flux in example I.
reconstruction of the heat flux of Fig. 4 given Eqs. (32)–

(34) and the sensor data Y .
The sensitivity matrix H is given as follows:

Hði; jÞ ¼ T ðd; iDt;wjÞ; i ¼ 1 : N ; j ¼ 1 : m ð36Þ

The 1D linear finite element shape functions are used as

the basis functions in Eq. (7). By doing so, hi is nothing

but the heat flux value at t ¼ idt, where dt ¼ 1:0
m�1

. Fig. 2

shows the basis functions and neighborhood (as used in

the MRF definition) for the 1D heat flux. For this

problem, TI is a zero vector. Substitution of H into the

first Bayesian formulation of Eq. (20), leads to the fol-

lowing posterior PDF of h:

pðhjY Þ / exp

�
� 1

2r2
½Hh � Y 
T½Hh � Y 


�

� exp
�
� 1

2
khTW h

�
ð37Þ

Using the Gibbs sampler discussed earlier, several

cases were studied for this problem. In the first three

cases, it is taken that d ¼ 0:3, Dt ¼ 0:02 (n ¼ 50) and

dt ¼ 0:04 (m ¼ 26). The measurement errors are white

noises, which are generated independently from zero

mean normal distributions. The standard deviation r for

these three cases is 0.001, 0.005 and 0.01, respectively.

The maximum, median and minimum of the recorded

(here simulated) temperatures are approximately 0.4, 0.2

and 2.0e)4, respectively. Therefore, the values of the

ratio of noise to signal for these cases are approximately

as follows:

Figs. 5 and 6 show the plots of the MLE and pos-

terior mean estimates of the boundary heat flux for these

three cases. The relative estimation error is defined as

r ¼ jjĥ�htruejjL2
jjhtrue jjL2

. Since the standard deviation of measure-

ment noise is stationary, the MLE estimate is the same

as the LS estimate. For these three cases, the MLE

estimates are obtained by solving the optimization

problem in Eq. (16) without regularization. This is for

the purpose of showing the smoothing effect of the

MRF. It can be seen from comparison of Figs. 5 and 6

that the MRF prior model greatly smoothes the inverse

solutions. The posterior mean estimates shown are

computed by direct optimization. The regularization

parameter a for the three cases was selected as 5.0e)4,
5.0e)3 and 2.5e)2, respectively, using the heuristic

Tikhonov method.

It is noticed that the posterior mean estimate is not

sensitive to the knowledge of r once the regularization

Case r r
Tmax

(%) r
Tmin

(%) r
Tmed

(%)

I 0.001 0.25 500 0.5

II 0.005 1.25 2500 2.5

III 0.010 2.5 5000 5
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Fig. 5. MLE estimates of heat flux when d ¼ 0:3, Dt ¼ 0:02

(n ¼ 50), and dt ¼ 0:04 (m ¼ 26).
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Fig. 6. Posterior mean estimates of the heat flux when d ¼ 0:3,

Dt ¼ 0:02 (n ¼ 50) and dt ¼ 0:04 (m ¼ 26).

0 0.2 0.4 0.6 0.8 1
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

t

q

True heat flux
Posterior mean estimate from MCMC samples
Posterior mean estimate from direct optimization
95% probability bounds of posterior distribution

Fig. 7. Posterior mean estimate and associated two-side 95%

probability bounds of case II from MCMC samples using the

true r in the chain.
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Fig. 8. Marginal PDF examples of case II from M
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constant is fixed. This implies that statistical information

of white noise is not necessary for the point estimate.

However, to quantify the uncertainty of point estimate,

the knowledge of r is crucial because it affects the

PPDF. To investigate the effect of r on PPDF, two

MCMC chains are run for case II using the Gibbs

sampler. In Fig. 7, the posterior mean estimate is plotted

with associated two-side 95% probability bounds for the

first chain, where the true r is used. The probability

bound is an indication of the range of the highest density

region of the posterior state space. The posterior mean

estimates obtained from direct optimization and

MCMC samples are not distinguishable, which is a

verification of the accuracy of the MCMC.

Fig. 8 provides plots of three marginal distributions

obtained from the MCMC samples of the first chain.

Figs. 9 and 10 plot the same quantities as Figs. 7 and 8

from the second chain, where a r value is used that is

twice the true r. In both runs of the Gibbs sampler,
1.00 1.10 0.25 0.35 0.45 0.55
0

4

8

12

q (t=0.64)

CMC samples using the true r in the chain.
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Fig. 9. Posterior mean estimate and associated two-side 95%

probability bounds of case II from MCMC samples using twice

of the true r in the chain.
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Fig. 10. Marginal PDF examples of case II from MCMC

samples using twice of the true r in the chain.
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Fig. 11. Posterior mean estimate and associated two-side 95%

probability bounds for data case II from MCMC samples using

the augmented Bayesian model.
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Fig. 12. Posterior mean estimate of heat flux when d ¼ 0:1,

Dt ¼ 0:02 (n ¼ 50) and dt ¼ 0:04 (m ¼ 26).
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10,0000 samples of h are recorded and the last 50,000 are

used in the above plots. It can be seen that the posterior

mean estimates are exactly the same using these two

chains. The width of 95% probability bounds in the

second chain, however, is almost twice the one in the

first chain.

In practice, an estimate of r is achieved through ei-

ther previous knowledge of the measurement equipment

or by repeating the experiments and collecting a se-

quence of data. The more the data available at each site,

the higher the accuracy of the PPDF. Herein, the aug-

mented Bayesian formula is used to update r as well as

the distribution of the heat flux for case II. The selection

of b is based on a rough estimation of the possible range

of r2. Here b is taken as 1.0e)4 to demonstrate the

algorithm. For comparison purposes, the modified

Gibbs sampler is run with d ¼ 0:3, Dt ¼ 0:02 (n ¼ 50),

dt ¼ 0:04 (m ¼ 26) and a ¼ 0:01. The same data set is

used as in case II and every condition is the same as in

Figs. 7 and 9 except that there is no prior information on
r. The same length of Markov chain is run as in the

previous two chains. The posterior mean of estimated r
is 0.008. This is indeed the best estimate a single run

experimental data can provide for r without knowing

any characteristic of the measurement equipment. The

estimate of r will of course vary according to specific

noise feature in the single experimental data set or with

the value of b. It is seen from Fig. 11 that the posterior

mean estimate of the heat flux is exactly the same as in

Figs. 7 and 9. The width of the posterior distribution is

between these two previous cases.

To check the effect of the temperature measurement

location on the inverse solution, a fourth case is con-

sidered in which d ¼ 0:1 with all other conditions

remaining the same as case II. It is seen from Fig. 12 that

the accuracy of the posterior mean estimate is slightly

improved compared to that of case II. Finally, in Fig.

13, the temperature prediction based on posterior mean
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Fig. 15. Basis functions for 2D heat flux and graphical repre-

sentation of the neighborhood used in the MRF model.
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estimate in case II is compared with the true temperature

at x ¼ 0:5. The predicted temperature is computed as

sample mean of Hh from MCMC samples. The predic-

tion agrees very well with the true temperature.

The sampling frequency in the above cases was se-

lected to emphasize that the Bayesian analysis works

well with relatively few data. Even though other meth-

ods of analysis of the IHCP (e.g. the sequential version

of the function specification method) are quite sensitive

to sampling rates, we have repeated the above calcula-

tions for smaller Dt to show that the Bayesian analysis

provides better estimates of the heat flux for each of the

cases reported above. This is expected from a statistical

point of view since more data implies better under-

standing of the noise distribution and better estimation.

The effect of discretization of the parameter space (see

Fig. 2) was also investigated. For example, considering

Dt ¼ 0:004 and all other conditions as in case II, we have

shown that the computed heat flux estimate remains

quite accurate. Finer discretization of the parameter

space for a fixed set of measured data leads as expected

to a progressive loss of accuracy.
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Fig. 16. True heat flux at x ¼ 0.
5.2. Example II: boundary heat flux identification in 2D

heat conduction

In this section, a solution is presented to a 2D tran-

sient heat flux identification problem. The direct prob-

lem considered is defined in dimensionless form as

follows:

oT
ot

¼ o2T
ox2

þ o2T
oy2

; 0 < t < 1; 0 < x; y < 1 ð38Þ

T ðx; y; 0Þ ¼ 2 sinðpxÞ sinðpyÞ; 06 x; y 6 1 ð39Þ

T jx¼1 ¼ T jy¼1 ¼ 0; 0 < t < 1 ð40Þ
oT
ox

����
x¼0

¼ qx;
oT
oy

����
y¼0

¼ qy ; 0 < t < 1 ð41Þ

An analytical solution to this problem can be obtained

for the case:
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Fig. 17. MLE estimate of heat flux at x ¼ 0 when r ¼ 0:005.
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Fig. 18. Posterior mean estimate of heat flux at x ¼ 0 when

r ¼ 0:005.
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Fig. 19. MLE estimate of heat flux at x ¼ 0 when r ¼ 0:01.
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Fig. 20. Posterior mean estimate of heat flux at x ¼ 0 when

r ¼ 0:01.
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Fig. 21. MLE estimate of heat flux at x ¼ 0 when r ¼ 0:02.
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Fig. 22. Posterior mean estimate of heat flux at x ¼ 0 when

r ¼ 0:02.
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Fig. 23. Marginal PDF of qx at t ¼ 0:005 when r ¼ 0:02.
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qx ¼ �2p sinðpyÞ expð�2p2tÞ ð42Þ

qy ¼ �2p sinðpxÞ expð�2p2tÞ ð43Þ

and is given as follows:
T ðx; y; tÞ ¼ 2 sinðpxÞ sinðpyÞ expð�2p2tÞ ð44Þ

The inverse problem is to reconstruct qx and qy . The

locations of simulated thermocouples are shown in Fig.

14. Thirteen evenly distributed thermocouples are
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considered with space interval d ¼ 0:125 and the dis-

tance to the boundary is also 0.125. The sampling time

interval is taken as Dt ¼ 0:002. The heat flux history was

reconstructed for the time range t 2 ½0; 0:05
, N ¼ 25,

hence, there are 325 observations. For the parametric

representation of qx and qy , 17 linear basis functions are

used in both directions of x (qy) and y (qx), and 11 basis

functions are used in the temporal direction (dt ¼ 0:005),
thus m ¼ 374. Fig. 15 shows the basis functions and the

neighborhood to each nodal component of the 2D heat

flux. The direct solver of the previous example is ex-

tended to compute the sensitivity matrix H . The Gibbs

sampler is still applicable. It is necessary to point out

that the same MRF regularization model is used in both

time and space. Also note that the temperature TI is not

zero in this example.

Three cases were studied with standard deviation of

measurements taken as 0.005, 0.01 and 0.02 (4% of

DTmax), respectively. Fig. 16 plots the true heat flux qx

whereas Fig. 17 shows the MLE estimates of qx for case

I. Note that zeroth order Tikhonov regularization was

used in the MLE estimation. There is no unique solution

to the optimization problem of Eq. (16) without regu-

larization in this problem because the number of ther-

mocouples is limited. The regularization parameter used

for case I is 5.0e)5.
Fig. 18 plots the posterior mean estimate of qx using

the same regularization parameter for case I. It is seen

by comparing with Fig. 17 that the posterior mean

estimate is much more smooth than the MLE estimate.

In fact, the relative estimation error is 28.76% for the

MLE estimate and is reduced to 4.62% by using MRF

regularization. One point to be addressed is that by

using the primal form of the MRF as introduced earlier

in this paper, the posterior mean estimate has obvious

‘edge effects’. That is, for example, the estimate of qx has

large deviation from the true solution at y ¼ 0

and y ¼ 1. This is due to the fact that MRF models

the interaction between all adjacent sites but the sites on

the boundary have only neighbors on one side of the

boundary. To bypass this problem, the covariance ma-

trix W is modified such that when hi is on the edge, ni is

assigned a large number to diminish the dependence

from inner sites. Similar results are observed for case II

and III, for which the MLE estimates are plotted in Fig.

19 (case II) and Fig. 21 (case III). The posterior esti-

mates are plotted in Fig. 20 (case II) and Fig. 22 (case

III). The regularization parameters for these two cases

are 2.5e)4 and 5.0e)4, respectively. The relative esti-

mation errors of MLE estimates in cases II and III are

33.19% and 35.92% respectively, which are reduced to

5.45% and 5.73%, respectively, for the posterior mean

estimates.

For demonstration of the computed posterior distri-

bution of heat fluxes, the marginal PDFs when r ¼ 0:02
are plotted for qx at t ¼ 0:005 in Fig. 23.
6. Conclusions

A Bayesian inference approach was introduced for

the solution of the inverse heat conduction problem. A

MCMC-based numerical sampling strategy was adopted

to exploit the posterior state space. The proposed tech-

niques were shown through a number of examples to

provide satisfactory solutions to the IHCP. They lead to

not only a point estimate of the unknown heat flux but

also an estimate of its statistical information as well as

quantification of the system uncertainties. In addition,

the inverse problem is regularized statistically through

the modeling of prior distribution. A Bayesian approach

provides a complete investigation of the IHCP, hence, it

is expected to provide more robust estimates, especially

when fewer sensor data are available.
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